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A method for solving the linear Fokker-Planck equation with anisotropic beam-beam 
charge exchange loss is presented. The 2D equation is transformed to a system of coupled 1D 
equations which are solved iteratively as independent equations. Although isotropic 
approximations to the beam-beam losses lead to inaccurate fast ion distributions, typically 
only a few angular harmonics are needed to include accurately the effect of the beam-beam 
charge exchange loss on the usual integrals of the fast ion distribution, Consequently, the 
algorithm converges very rapidly and, in the absence of other strongly anisotropic processes, 
is much more efftcient than a 2D finite difference method. A convenient recursion formula for 
the coupling coeflicicnts is given and generalization of the method is discussed. C’ 199, 
Academic Press. fnc 

1. INTRODUCTON 

Intense neutral beam heating of low density plasmas [l-4] can produce a charge 
exchange loss rate between the injected fast neutrals and the trapped fast ions that 
approaches the thermalization rate. The anisotropic velocity distributions of the 
beam neutrals and fast ions together with the strong energy dependence of the 
charge exchange cross section produce a charge exchange loss rate with strong 
pitch angle dependence. When a Legendre expansion is used to represent the 
angular dependence of the distribution function [S, 61, the 1D equations for each 
Legendre harmonic are coupled by the anisotropic charge exchange loss. In the 
absence of any anisotropic processes (e.g., collisions with anisotropic particle 
distributions, acceleration by an electric field or magnetic compression, etc.) the 1D 
equations for each Legendre harmonic are independent and the system is very easily 
solved. In order to simplify the presentation only the coupling from beam-beam 
charge exchange is treated; presumably other processes could be handled in a 
fashion similar to that given below. 

In spite of this complexity a solution based on Legendre harmonics is preferable 
to a 2D finite difference method because the fast ion particle density, current den- 
sity, parallel and perpendicular pressures, beam-target, and beam-beam fusion 
reactivities are integral quantities which involve only low order harmonics; the first 
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three or four usually suffice [O-S]. A finite difference algorithm with respectable 
accuracy, on the other hand, requires many angular grid points and corre- 
spondingly more calculation even if operator splitting is used to transform he 2D 
problem to a pair of ID problems. In addition, the most efficient method of 
calculating the beam-beam fusion reactivity is based on Legendre harmonics [8]; 
a distribution based on a difference grid needs to be converted to a iegendrc 
expansion to use it! 

e general approach described in this paper can be more broadly applied [9]: 
any and all of the terms in the Fokker-Planck equation could have an angular 
dependence. A general nonlinear formulation [7] could be recast in this way. Whez 
the pitch angle domain is limited by loss cones, the basis functions are no longer 
Legendre polynomials and both the basis functions and the coupling coefficients 
must be determined numerically 171. It is interesting to note that on 
harmonics are also needed in simulations of simp!r mirror machines [7 
are complementary to the example below in that they have near-perpendicular 
injection, loss cones, and anisotropic nonlinear Coulomb collision terms. 

2, COUPLED EQUATIONSFOR THE ANGULAR HmiMO7acs 

The usual approximate form (valid for exp( -((t./~l~~~)‘) < 1 and (L~/c~?~~)’ < 1) of 
the linear Fokker-Planck equation describing the fast ion velocity space distribu- 
tion in a background plasma is 

where (= L~,,:L’ and rS5, LT,, and zpS are standard [IlO]. ( ompression and 
electric field terms are neglected here.) The collision ra axwellian bacic- 
ground ions and electrons have been simplified by neglecting higher order correc- 
tions of order exp( - (v/u~~~)‘) and (zI/L~,~~~)~, respectively. 

The charge exchange loss rate can be divided into two parts 

Th.e “beam thermal” losses arise from reactions with the more or less isotropic 
thermal neutral gas arising from wall and volume sources; this term is no: of 
specific interest here and is ignored below. The “beam-beam” loss rate is 
anisotropic because the velocity space distribution of neutrals in the injected beam 
is highly directional. In most circumstances there will be many beam-beam terms; 
one for each of the three energy components in each of the ion sources in a neutral 
beam system. 
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The beam-beam reactivity for a ring of fast ions with velocity space position of 
(tl, 0) reacting with a delta-function distribution of fast neutrals at (II,, (3,) is 

where v:~, = v2 + z.~~ - 2vv,(cos 0 cos I!?~ + sin 8 sin 8, cos 4) and 4 is the gyrophase 
angle relative to the component of the beam neutral velocity which is perpendicular 
to the magnetic field, cos 0 = <, and cos 8, = 5,. 

For neutral and fast ion energies > 30 keV/amu( ~a)~~ is a strong function of 
pitch angle (Fig. 1) because oCX is a strong function of n,,, [ 111. The greatest 
anisotropy occurs for unidirectional injection with I[,/ - 1 and u - v,; _f(u, [) is 
most anisotropic under the same conditions. For these reasons the test problem 
described below has parallel injection; the beam-beam fusion reactivity provides a 
sensitive scalar measure of changes in the distribution function. 

By expanding the distribution function and rCX in Legendre polynomials 

multiplying Eq. (1) by PI(i), and integrating over [, we obtain a coupled system of 
1D equations for the angular harmonics of the distribution: 

1(1+ 1) v3 M h' 

- 
3 
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"fi- c c ~41,,,,f,,~~,,+sI? 

111 = 0 ,I = 0 

-0.8 -0.4 0 0.4 0.8 r 

FIG. 1. The beam-beam charge exchange reactivity, <au)~~(c,, ;), for 120 keV deuterium neutrals and 
fast ions where [,,=(a) 1.0; (b) 0.8; (c) 0.6; (d)O. 
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kr I = 0 to MI where 

The coupling coefficients, A,,,,, are zero if I + m + n is odd or if the sum of any pair 
of indices is less than the remaining index. J. C, Adams [l2] derived a closed form 
expression for the coefficients 

A 
(21+l)(m+n-I)! (I+rz-??I)! (l+H-E)! 

l.m.r! = (2s+ l)! (S-/l)!z (s-m)!Z (s-n)!’ ’ 

where 2s = E+ vlr + n, but it may be more convenient to calculate them Irom the 
recursion relation 

which follows from application of the identity 

to the definition of A[.,,.,,. 
The diagonal elements, A,,/ .,*, are easy to handle; only the elements with i+ IE 

couple what would otherwise be independent equations for each J;. The coupling is 
less burdensome than it appears because many elements of A,,nl,,I are zero and in 
practice N can be as small as 2 without serious loss of accuracy in the usual global 
properties of the fast ion distribution. 

Ignoring the implicit dependence on fi of the off-diagonal terms, 

we may consider them to be pseudo source terms. When solving the equation for 
each .f,, the off-diagonal terms are evaluated using the most recent versions of the 
f, (which are initially zero). The iterative solution of this set of “independent” 
equations converges to the solution of the coupled set. Note that the coefficients of 
j., in Eq. (2) arc unchanged during the iterations: thus the coefficients in the 
tridiagonal difference equations are set up once and only the calculation of 
the “source” and the elimination and back-substitutron are iterated. This i.s a very 
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FIG. 2. The lowest harmonic of the fast ion distribution function, f&c), for several treatments of the 

beam--beam charge exchange loss applied to the model problem described in the text: (a) no beam 

neutral density; (b) the (isotropic) beam-target charge exchange reactivity, (ar)~J, for cold neutral gas 

is used in place of (cTc~)~~. The first 11 harmonics of f(v) together with 1, 3, and 11 harmonics of v,, 

are used for curves (c), (d), and (e), respectively. 

convenient algorithm which usually converges very rapidly and involves only a 
modest change to existing codes. 

The solution of an extreme situation is shown in Fig. 2. Even though the beam- 
beam charge exchange loss is very large, the iterative method converges. The 
boundary conditions are standard:f(v,,i) = 0 (thermalization sink) and zero particle 
flux at u,,,. This example has 120 keV neutral deuterium injection with [, = 0.95 
in a deuterium background plasma at a density of n, = 5 x 10” m-3, with 
temperatures of 10 keV, and Zefl= 1.0. A deuterium “beam” neutral density of 
2 x lOI rnb3 produces a deuterium source rate of 7 x 102” me3ss’. The source rate 
used in this test problem has been artificially reduced to insure that nfas, 4 n, so that 
the different methods of handling the beam-beam charge exchange loss do not 
affect n, and, hence, the thermalization time scale. In this test problem r,, = 1.5 s, 
EC = 225 keV, zPS = 1.1 s, and v,&(o,) = (0.22, 0.10, 0.12) s, respectively. 

With such a large beam neutral density the beam-beam charge exchange loss has 
a dramatic effect on the steady-state fast ion distribution. The importance of the 
anisotropic part of the charge exchange loss is seen by comparing curve (c), which 
corresponds to using only vO, with curve (e), where the full angular dependence of 
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\lCX is used. Both isotropic approximations-curves (b) and jcj--seriously under- 
estimate the loss because the charge exchange reactivity has been averaged over 
pitch angle although most of the fast ions have a pitch angle near that of the 
neutrais, 

The iterative procedure described above converged to a part in 106 in eight itera- 
tions. The fast ion particle density, pressure: and beam-beam fusion rate changed 
less than 5% when (M, N) were lowered from (11, 11) to (7, 3). When ]<,I d6.8, 
the accuracy is 5 96 or better with (M, N) = (4,3) or greater. 

3. DIscussIoN 

The algorithm described in the previous section has worked very weil in simufa- 
iions of “supershots” in TFTR with convergence to the Ievei of 10mm6 occurring in 
three or four iteratons. The usual integrated properties of the distribution are typi- 
tally changed by less than a percent when more than three harmonics are used to 
represent the charge exchange loss rate and the distribution. Beginning the iteration 
I.oop over the fi with i= M and working downward using the mosi recently 
cal,culated value of the f,,, converges slightly faster than starting with != 0 and 
working up in !. This occurs because the pitch angle scattering term in Eq. [II ) 
grows as i(i + 1) and thus the high i harmonics are less sensitive to the beam-beam 
charge exchange and are closer to their final values on the first pass than the iow 
! harmonics. 

Kf many more harmonics are required, it is possible to use the techniques 
described by Karney [ 133 to vectorize more efticiently the elimination and back- 
substitution algorithm; the algorithm would also apparently be suitable for a 
parallel computer. 
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